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SUMMARY: NEURAL NETWORKS AGENCY MBS PREPAYMENT MODEL 

Why a machine learning model for Agency MBS? 
• Prepayment is a highly complex and non-linear process with many idiosyncratic risk factors, among the most 

complex financial models 

• Recent development in computational software and hardware enable us to make significant advancement in AI 
prepayment models 

• Machine learning models have excelled in many areas, such as image recognition, natural language processing, 
fraud detection, etc. 

What is the model and what have we learned? 

• Deep neural network model applied to pool level agency MBS prepayment data, compared with MSCI1 (the 

human model) 

• Results show the deep learning model is able to capture very complex prepayment patterns and signals with 

extremely high computational efficiency 
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 MACHINE LEARNING IN FINANCE 

• Consumer credit risk models via Machine-Learning Algorithms (Dr. Andrew Lo, 
2010) 

Using machine-learning model for consumer credit default and delinquency 

Generalized classification and regression trees 

Accurately forecasted credit events 3 to 12 months in advance 

• Risk and risk management in credit card industry (Dr. Andrew Lo, 2016) 

Analyzed very large dataset consisting of credit card data from six large banks. 

Decision trees and random forests model perform better than logistic regression at short time horizon 

• Deep learning for mortgage risk (Dr. Kay Giesechke, 2015-2018) 

Using deep neural network to model mortgage prepayment, delinquency and foreclosure 

Loan level data 

Compared NNM with a logit model 
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MODELING OBJECTIVE 

Forecast prepayment rate for agency RMBS pools 

SMM : Single Monthly Mortality Rate 

CPR: Conditional Prepayment Rate 

Agencies report last month’s prepayment speed on the 4th business day of each month. 

Prepayment types: 

─ Rate refinance 

─ House turnover 

─ Cash-out 

─ Curtailment 

─ Buyout 
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MORTGAGE PREPAYMENT MODELING: SCIENCE AND CRAFTSMANSHIP 

Difficulties with mortgage prepayment modeling 

• Large data sets: ~20-2000 G data, Agency MBS covers ~400,000 pools/100+mm loans 
performance over 20-30 years, pool/loan variables ~30-100 

• Multiple, highly non-linear and interactive risk drivers  (“layered risk”) 

• Loan size vs. prepayment is function of moneyness 

• Age vs. prepayment is function of past moneyness history 

• Loan purpose (refi vs purchase) vs. prepayment is function of origination year 

• …. 

• Regime changes 

• Mortgage credit and borrower risk appetite cycles, and business practice affect 
absolute level and risk drivers for prepayment/default 
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Agency MBS prepayment 

• Complex behaviors 

– 30–100 risk factors: rates, loan 
size, GEO, purpose, property, HPA…. 

– “layered risk”- non-linear interaction 
(e.g., loan size vs moneyness, 
purpose vs. origination year, ..) 

– Regime changes: behavior, policy 

– Statistical noises 

• Large data set to model 

– 400,000 pools/100m loans, 30yr 

• Modelers as craftsman? 

– Idiosyncratic modeler risk 
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Architecture* 
Hidden 

Input layer 

r1 r .. 
:!'.1 = mox(A 1K I B,.,0) :!'.'... - mlll:'.(Ani' ,-i + Bn, 0) 

Vilhtes ot hirJden lilyers ilrP. generilterJ hy Mtiviltion 
functions with previous layers as inputs, and weights and 

biases as parameters 

•Example of a Neural Network archite.cture Q Node 

MSCII 

Model training 
1 Select a set of training data: 

inputs togP.thP.r with 
correct/actual output 

2 Pass training Al Model 
data through 
the network 
to obtain 
predicled 
output 

T wea~ weiqttls tmcl biases 
using gradient function 

Actual 
Output 

3 reedforward pass: compare 
ilr.t ual Oll tp11t With pred i r.tP.rl 
output ilnd determinP. cost 
function based on the error 
rnlc::u I aterJ 

Predicted MeP.ts 
Output Ctiteria? --~o•Y•••I 

4 Backward propagation: oplirniLe weiqhls am.I I.Jiases (p,:H c1meler s) 
until some stopping condition has been met by passing the error 
si nal throu h the network usin radient function 

AI agency MBS prepayment model 

Deep neural network model 

• Feed forward neural network 
– Applied successfully in many other fields 

– Layers and nodes, hyper-parameters 

– Ensemble techniques, bagging and boosting 

• Competing vs. “human” /MSCI production model 
– Forecast accuracy 

– New signals, new discoveries 

– x100-1000 Efficiency gains: 3hrs vs. weeks/months 
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• Higher modeling accuracy 
– Across cohorts and multiple dimensions of risk factors 

– Highly adaptive to high dimensionality and non-linearity 
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AI vs. “human” models: higher accuracy 
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AI vs. “human” models: higher accuracy 

Ranking based sample error tracking for FNCL 4s 
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• Higher modeling accuracy 
– Across cohorts and multiple dimensions of risk factors 

– Highly adaptive to high dimensionality and non-linearity 
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AI vs. “human” models: higher accuracy 
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AI vs. “human” models: new signals 
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• Accuracy vs overfitting: loan size example 
– Understand sensitivities of risk drivers and economic rationale 

– Apply regularization to penalize overfitting 
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AI vs. “human” models: new signals 

Model speeds for OTM 60bps vs loan size (in thousands) Housing turnover vs loan size and year* 
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• Is low loan balance still safe investment for extension risk? 

– Sensitivity tests for the AI model indicate relationship between loan size and housing turnover has flipped after the recession 

– This is verified by Black Knight’s proprietary data 

* Source: Black Knight, used with permission 16 



 

 

CONCLUSION 

NN model vs. “Human Model” 

• Accurate forecasts and successfully flag prepayment 
anomalies over the study period 

• Accurate model large numbers of risk factors 
• Accurate model highly non-linear and interactive risk factors 
• Highly efficient modeling process - hundreds times of 

increases in modeling efficiency 
• Was able to find/flag prepayment signals that eluded human 

models 
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4: Agency MBS prepayment regimes since 2003 

100 

2003: historical l'ow 

mortgage rates and 

, refinancing wave ----
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Mid 2004-,Mid 2006: Strong home price Mid 2007-2009: Severe 

appreciation, (HPA), fast housing turnovet", high cash - home price depreciation 
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2009: historical low mortgage 
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MORTGAGE PREPAYMENT MODELING: SCIENCE AND CRAFTSMANSHIP 
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Exhibit 5: HARP CL TV curve history and long term model assumptions 
The CL TV curve represents the ratio of refinance speeds across CL TV spectrum, using sub-50 CL TV cohort as 
benchmark, with all other pool variables (for example, loan size, moneyness, FICO, etc.) holding constant 
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MORTGAGE PREPAYMENT MODELING: SCIENCE AND CRAFTSMANSHIP 

The HARP program caused temporary inversion of the CLTV Prepayment Curve 

HARP: Home Affordable Refinance Program 
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MORTGAGE PREPAYMENT MODELING: SCIENCE AND CRAFTSMANSHIP 

Example of modeling: 
Assume ppm (pool, time) = f(X1, X2, X3,…. Xn) … 

start by assuming separable risk factor: ppm= f1(x1)*f2(x2)…. Until (often) proven 
incorrect… 

estimating  f1(x1)  by “building cohort”, by bucketing loans/pools for groups of x1, but similar 
x2, x3…. 

(this further assumes quasi linear property of x2, x3….  Average(f2(x2) f3(x3)…)= f2(ave(x2))* 
f3(ave(x3))…. 

…..  Checking overall fit after all Xn are fitted,  adding extra variables to deal with non-linear and 
interactive variables…  this often does not lead to convergence … 

• Time consuming and non-standard approaches 
• Experience and step-by-step / regime-by-regime progress are valued 

• Can new techniques of AI modeling provide the much needed disruption? 
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neural network model 

Architecture* 

Input layer 

!:1 !n 
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Values ot hidden layP.rs are ~enerated hy ar.tivation 
futtctiu11s with previous layers as inputs, and weights and 

biases as parameters 

•Exampfe of a Neural Network architecture Q Node 

MSCI •-

Mode~ training 
1 Select a set of training data: 

inputs tog~thP.r with 
correct/actual output 

2 Pass trail'linq Al Model 
data through 
the network 
to obtain 
predidet.l 
output 

t 
Tweak weiqt1Ls i:mu Ltiases 
using gradient function 

Actual 
Output 

Predicted 
Output 

F eedforwa rd pass: compare 
ac:tual outp11t with predicted 
out rut and dP.termine cost 
function based on the error 
calqtlnted 

MeP.ts 
Criteria? 

~Ye• ·I 
4 Backward propagation: oµlfrnize weiqhls am.I uiases (par c1meter s) 

until some stopping condition has been met by passing the error 
signal through the network using gradien function 

FEED FORWARD NEURAL NETWORK 

Network architecture: 

Layers and nodes 

Hyper-parameters 
Batch size, number of nodes, learning rate, max-norm constraint, dropout rate 

Ensemble techniques: 
Bagging:  minimum MSE of different realizations and neural networks 
Boosting: Fine tune a neural network via changing a few hyper-parameters 
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GENERAL 

TRADITIONAL VS.. DEEP MACHINE LEARNING 

Identify 
problems 

Set 
benchmarks 

Train models 
Compare 

performance 
Choose 
model 

Optimize 
model 

Deploy 

Traditional learning algorithm Deep Learning 

Pros Cons Pros Cons 

Works better on smaller 
data 

Hard to scale state-of-the-art for certain 
domains, such as computer 
vision and speech recognition. 

require large amount of data. 

Financially and 
computationally cheap 

Lack of variability Perform very well on image, 
audio, and textual data, Easily 
updated with new data 

Not suitable for classical 
machine learning problems. 

Algorithms are easier to 
interpret, have more 
theories to back them up 

Labor intensive model 
maintenance 

Versatile architecture and low 
overhead maintenance 

Computationally intensive to 
train, and they require much 
more expertise to tune 
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X1 
W1 y(t) y(l) y(2) y(3) 

X2 

X3 out w = 

wi Wo x(t) x(l) x(2) x(3) 

Xo ~ 
Xi 

MSCI •-

NEURAL NETWORKS MODEL 

Feed forward neural network (FNN) 

the information moves in only forward direction from the input nodes to the output nodes. There are no 
cycles or loops in the network.; 

Deep FNN consists of tens of layers and thousands of nodes; the simplest kind of FNN is logistic model 

Feedforward Neural Network Recurrent Neural Network Logistic  Model 

Recurrent Neural Network (RNN) 

A class of neural networks exploit the historical input sequences. Such inputs could be text, speech, time 
series, and anything else where the occurrence of an input in the sequence is dependent on the inputs 
that appeared before it 

Motivation: Not all problems can be converted into one with fixed length inputs and outputs, such as 
text translation, speech recognition or time-series; predictions require a system to store and use context 
information 

The input at time t include both the attributes at t and the intermediate values containing history at t-1. 
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BUILDING NEURAL NETWORK MODEL 

EDA Feature 
selection 

Build 
model 

Performance 
Evaluation 

1, sanity check 1,information value 1,error tracking 1. link weights 
2. data cleansing 2.correlation matrix 2.sensitivity 2. hyper-parameters 
3. data transformation 3.domain knowledge 3. transparency tool (deeplift) 

Deep neural network fitting 

2003-2018 30yr agency MBS data (~25G data) 

30+ input variables: pool attributes, macro-economic variables 

To reduce complexity, we added incentive, 1 regime indicators, and 1 policy 
indicator (HARP) 

Cost function of RMS error of pool level prepayment 

1 round of fitting can be completed in ~ 3 hours on a GPU machine 
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MODEL DRIVERS 

WALA Weighted Average Loan Age

WAC Weighted Average Coupon

CLNSZ Current Average Loan Size

OLTV Original Loan to Value 

Refi% Percentage of Refinanced Loans by UPB

SecHome% Percentage of Second Home Loans by UPB

MultiFamily% Percentage of Muti Family Loans by UPB

Investor% Percentage of Investor Loans by UPB

TPO% Percentage of Third party origination by UPB

AOL Original Average Loan Size

LNSZ_Q4 Max original loan size

LNSZ_Q3 Max original Loan Size - 3rd Quartile

LNSZ_Q1 Max original Loan Size - 1st Quartile

Geo_CA% Percentage of California Loans by UPB

Geo_FL% Percentage of Florida Loans by UPB

Geo_TX% Percentage of Taxas Loans by UPB

Geo_NY% Percentage of New York Loans by UPB

Geo_NE% Percentage of New England Region Loans by UPB

Geo_NO% Percentage of North Region Loans by UPB

Geo_SO% Percentage of South region Loans by UPB

Geo_PC% Percentage of Pacific region Loans by UPB

Geo_AT% Percentage of Atlantic region Loans by UPB

Geo_NONUS% Percentage of non-US region Loans by UPB

Seasonality Calendar month

Independent variables

Incentive WAC - Mortgage Rate(t)

Rolling Incentive Average Incentive ( 20month)

Loan size dispersion (LNSZ_Q3-LNSZ_Q1)/AOL

SATO Spread-at_origination = WAC - Mortgage Rate(0)

HPA House Price Appreciation ( HPI(t)/HPI(0)-1 )

HARP-able

1: IssueMonth <= Jun. 2009 and factor date between Mar. 2009 

and Dec. 2011

2: IssueMonth <= Jun. 2009 and factor date > Dec. 2011

HARP-ed Refi% = 100 and OLTV > 80 and issueMonth > Jun. 2009

Underwritting standard 0: before 2008, 1: after 2008

cBal Current Balance

Prepayment speed Prepayment speed in SMM

Derived Variables

Weight

Dependent Variable
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OUT-OF-SAMPLE FORECASTS 

• True out-of-time and out-of-sample test. 
• Overall fitting is good in out-of-sample test 
• Missed the refi wave in second half of 2016 
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MODEL POOL VARIABLES VS HUMAN MODEL 

Ranking-Based Sample Error Tracking for Coupon 4s 

• Ranking based error tracking methodology provides a comprehensive measure 
of model accuracy across all pool variables 

• NNM performed better than Hmodel 
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Error Tracking against HARP effectiveness across CLTV Cohorts 

NNM is able to pick up the general trend of HARP effectiveness but missed the 
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MSCII 

About MSCI 

MSCI is a leading provider of critical decision support tools and services for the 

global investment community. With over 45 years of expertise in research, data 

and technology, we power better investment decisions by enabling clients to 

understand and analyze key drivers of risk and return and confidently build 

more effective portfolios. We create industry-leading research-enhanced 

solutions that clients use to gain insight into and improve transparency across 

the investment process. To learn more, please visit www.msci.com. 
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MSCII 

Contact us 

AMERICAS EUROPE, MIDDLE EAST ASIA PACIFIC 
& AFRICA 

Americas +1 888 588 4567 * Cape Town + 27 21 673 0100 China North 10800 852 1032 * 

Atlanta + 1 404 551 3212 Frankfurt + 49 69 133 859 00 China South 10800 152 1032 * 

Boston + 1 617 532 0920 Geneva + 41 22 817 9777 Hong Kong + 852 2844 9333 

Chicago + 1 312 675 0545 London + 44 20 7618 2222 Mumbai + 91 22 6784 9160 

Monterrey + 52 81 1253 4020 Milan + 39 02 5849 0415 Seoul 00798 8521 3392 * 

New York + 1 212 804 3901 Paris 0800 91 59 17 * Singapore 800 852 3749 * 

San Francisco + 1 415 836 8800 Sydney + 61 2 9033 9333 

São Paulo + 55 11 3706 1360 Taipei 008 0112 7513 * 

Toronto + 1 416 628 1007 Thailand 0018 0015 6207 7181 * 

Tokyo +81 3 5290 1555 

• = toll free 

msci.com 
clientservice@msci.com 
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MSCII 

Notice & disclaimer 

This document and all of the information contained in it, including without limitation all text, data, graphs, charts (collectively, the “Information”) is the property of MSCI Inc. or its subsidiaries (collectively, “MSCI”), or MSCI’s licensors, direct 
or indirect suppliers or any third party involved in making or compiling any Information (collectively, with MSCI, the “Information Providers”) and is provided for informational purposes only. The Information may not be modified, reverse-
engineered, reproduced or redisseminated in whole or in part without prior written permission from MSCI. 
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